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A. PURPOSE 

Thee booster magnet sextupole components were.selected 

to remove the momentum variation of betatron frequencies for 

small amplitudes and momentum excursi.on. This note indicates 

the extent to which this condition is fulfilled using the 

measured gradients and a momentum range that spans the availa- 

ble aperture. 

B. RADIAL MOTION 

On the median plane the radial motion is expressed 

adequately by 

d2x - 
ds2 

= i(l+$) + ;(l+~12By. 

Let X be a periodic solution of Eq. (1) and expand radial 

motion around this solution, 

x = x + u, (2) 

retaining only terms linear in the betatron amplitude U. 
By(x) f By(X) + uBy'(X) + -.. (3) 

$+ ;BY(0) s 0 0 
PO -= p-ap=,-k 
P P P 

(4) 
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Then 

i 
. 

But 

d2X PC 
ds2 

$ + x - 
P2 

Let 
B ‘(0) 

kl = B;(O) 

g(X) = By'0 
B; '(0) 

(7) 

(8) 

(9) 

(10) 

Then, after subtracting Eq. (7) from Eq. (6) and retaining 

only terms linear in u, one has 

d2U + -..(l--) lf Ap 2 

ds2 pii p 
cl+:) pklMg(X) + 2 (l+$)b(X) 

I- 
1 u = 0, (11) 

where kl has been replaced by km to indicate that the meas- 

ured gradient is to be used. 

For comparison, when Ap = 0, Eq. (11) becomes 

2 
au + %l+pkls) 
ds2 p2 

u = 0, (12) 

where kl is now replaced by kls to indicate that the betatron 

frequencies in this case are obtained from the design Para- 

meters and were calculated using SYNCH. 
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Assuming that the motion described by Eq. (11) is not 

very different from that described by Eq. (12), one has for 

the change in the radial tune 

Avx = & 
s 

(K~(s)-KxS(s))'8x(s)ds, 
c 

where Ii XM and K xS are the coefficients of u in Eqs. (11) 

and (12). 

C. VERTICAL MOTION 

For small betatron amplitudes and median plane symmetry, 

the vertical motion is described adequately by 

c?.!L = - ~(l+~)2Bx< 
ds2 

(14) 

But 

Bx(x,y) = Bx(x,O ) 

Using the ampere circuital law 

one has 

W 
+ YC-3 

ay x,0 
+ . . . (15) 

and median plane symmetry, 

Bx(x,y) = y By’b,O). 

Setting x = X gives 

& - l(1dQ X2 
ds2 p p 

) (l+p) klMg ,(X)Y = 0. 

For Ap = 0 and kl replaced by klS, Eq . (17) becomes 

(16) 

(17) 

(18) 

Again, assuming that the change from Eq. (18) to Eq. (17) 
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only causes a small tune shift 

(K yb,-Kys) 8, (s) ds, (19) 

where K 
YM and K 

YS 
are the coefficients of y in Eqs. (17) and 

(18). 

D. HARD EDGZ APPROXI&WTION 

Although Eqs. (13) and (19) are sufficient as expressed, 

one needs to know the focusing functions KxE,,, Kxs, K I yM' KyS 
as a function of position. This is most conveniently done by 

assuming them constant within each magnet and abruptly re- 

duced to zero along some curve that represents the effective 

termination of the magnet. Justification for this procedure 

is obtained by appealing to the fact that the reduction in 

field from full value to zero occurs in a distance that is 

small compared with a betatron wavelength. 

A further simplification is introduced. The curve 

representing tie effective termination of the magnetic field 

at the entrance to the magnet is a mirror image of the termi- 

nation curve at the exit end of the magnet. Analytically 

for one magnet, one has 

By(x,s) = By(x) - (s-s1+f(x)) - S*(s-s2-f(X) 1) , (20) 

where S 1 and S 2 are step functions and 

s=s 1 - f(x) (21) 
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is the termination curve at the entrance end, and 

s=s 2 + f(x) (22) 

is the termnation curve at the exit end. For convenience 

s2 - s1 = physical magnet length, (23) 

and also equals magnet length used in SYNCH. Equation (20) 

gives also 

BY’ (x,s) = B y' (x) * By(x) f' (xl 6 +6 \ 
1 Y 

(24) 

where 6 1 and S 2 are delta functions corresponding to Sl and 

s2' 

E. EXPLICIT EXPFZSSIONS 

In this perturbation calculation the linear orbit 

functions B,(s), B,(s), and x (s) are obtained from the 
P 

SYNCH program. The periodic solution for the off momentum 

closed orbit is given then by 

X(S) = x (s) .Q 
P P' 

For convenience, let' 

(25) 

Ktil = s{ (l-$) [ * (I+$) ok&‘(x) + 2(l+$)b(X) - 1 2 > 
(26) 

K ys 'k = -p 1s (29 ) 

2 
L xii = +$) ( l+$) b(X) (30 ) 

L 1 
xs = 0 (31 ,) 

K 
xs = $l+pklS) (27) 

P 

KyM 
= -+$P, (l+?.k) 2klMg (x) (28) 
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(33) 

f MF = ASE + AFX f BFX2 + cg3 f . . . (34) 

fMD = AS, + ADX + BDX2 -t CDX3 + . . . (35) 

fSF = ASFX (36) 

fSD 
= AsDX. (37) 

The coefficients ASF and ASD are determined such that 

the effective magnet end shape for the SYNCH run is identical 

with the physical magnet end. The remaining coefficients in 

Eqs. (34) and (35) are to be chosen subsequently. 

In terms of these symbols, the tune shifts for the 

booster lattice whose period is N b~ecomes 

Avx = g is '2F 
(K *-KxS) 6,ds (K xM-KxS) Bxds 

'1F 

+ (KxM'x)entr.(F) + (KxMBx)exit(F) "F 1 
+ (KxM8x)entr.(D) + (KxMBx)exit(D) ASD 1 

+ (L.&,f' ) M entr.(D) + (LxMBxf'M)exit(D) 

- (LxSBxf'S)entr.(F) - (LxSBxf'S)exit(F) 

- (LxSBxf'S)entr.(D) - (LxSBxf ‘S)exit(D) 
> 

(38) 

and 



Av =g 
Y 

(K yM-Kys) Byds + 

+ C (KyMBy)entr.(F) + (KyMBy)exit(F) *'F 1 
-t (KyMBy)entr.(D) + (KyM8y)exit(D) AsD 1 
+ (LYMBYf' ) M entr.(F) + (LyMByf'M)exit(F) 

+ (LyMByf'M)entr.(D) + (Ly~~Byf'M)exit(D) 

(LySByf'S)entr.(D) - (LysByf Is) (39) 

Note that slF, Sag, '1D' '2D are the effective magnet ends 

on the central orbit as used in SYNCH. Thus, positive ASF 

and AS D indicate that the effective magnet ends at the cen- 

tral orbit increase the magnet length in the perturbed case. 

F. OPTIMUM END SHAPES 

Equations (38) and (39) show that the tune shifts Avx 

and Av 
Y 

away from the corresponding SYNCH tunes are linearly 

related to the coefficients in the power series expansion of 

the effective end shapes as given in Eqs. (34) and (35). One 

might consider, therefore, that an optimum end shape could be 

obtained by adjusting ASF, AF, B 
F' cF' etc., and AS D' AD, BDt 

cD' etc., such that the quantity 
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s (W (a)*(Av )2 
XP X + ~~(%)*(Av~)~)d($) = minimum. (40) 

In this way any design or fabrication difficulties in the 

body of the magnet could be rectified by finding suitable end 

shaping that yields the desired effective end shape. Notice, 

however, that, although this procedure will work, one should 

be careful about interpreting the ASF, AS,, AF, AD so 

obtained. The difficulty stems from the fact that, in the 

linear theory, additional focusing may be obtained either by 

increasing the magnet length or by changing the edge angle. 

The functions of momentum that multiply ASF or AS, are only 

negligibly different from those that multiply AF and AD. If 

they had been identical, the least squares procedure would 

have failed. To obtain realistic results, it is preferable 

to remove this difficulty by choosing fixed values for ASF 

and AS D and minimize Eq. (40) with respect to the remaining 

coefficients. 

G. LEAST SQUAFCSS ANALYSIS 

In Eq. (38) let the quantities not subject to adjust- 

ment be designated by DNUX(J) where uniformly incremented 

values of Ap/p are represented by the index J. Thus 



-9- FN-192 
0300 

2N DNUX(J) = G 
is 

s2F (K xM-KxS) Rxds + 
s 

S2D (K sM -KxS) R,ds 

SIF '1D 

+ (KxMBx)entr.(F) + (KxPIBx)exit(F) "F 3 

+ (KmB~)entr.(D) + (KxMBx)exit(D) "D 1 

By utilizing Eqs. (34) and (35) and defining the array 

D(K) to be 

c 1 
i I D(K) = LAF, AD, BF, SD' cF, CD/ .**i (42) 

and the array T(J,K) to be 

T(Jr2) = (LxlxBx)entr. (D) + (LxMBx)exit(D) 

T(J,3) = 2(LmBxX)entr-(F) + 2(LmBxX)exit(F) 

T(J,4) = 2(LfiIfixX)entrv(D) + 2(Lti6BxX)exit(D) 

T(J,5) = 3(LxM6,X2)sntr (F) + 3(L&xx2) exit(F) 

2 
T(J,6) = 3(Lti.,!3xx )entr.(D) + 3(LflBxX2)exit(D) 

T(J,7) = etci, (43) 
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Equation (38) becomes 

Ahvx(J) = DNUX(J) + 1 T(J,K)D(K). (44) 

K 

In an analagous manner let the fixed quantities in 

Eq. (39) be designated by DNUY(J). Then 

2N DNUY(J) = 471 
s 

‘2D 
(KIM-KyS)Byds + 

SID 

(KyM-Kysl Byds 

+ (KyMfiy)sntr.(F) + (KyMBy)exit(F) "F I 

+ (KyMBy)entr.(D) + (KyM5y)exit(D) "D 1 

- (LySByf'S)entr(F) - (LySByf'S)exit(F) 

- (LySByf'S)entr.(D) - (Lys5yf 'S)exit(D] . (45’ 

Further, let the array S(J,K) be 

s(Jrl) = (LyMBy)entr. (F) ' (LyMBy)exit(F) 

s(J'2) = (LyMBy)entr.(D) + (LyMBy)exit(D) 

S(J,3) = 2(LyMByX) entr.(F) + 2(LyMByX)exit(F) 

:(J,4) = 2(LyM@yx)entrv(D) + 2(LyMByX)exit(D) 

S(J,S) = 3(LyM@yx2) entr.(F) ' 3(Lyfi~ByX2)exit(F) 

S(J,6) = 3(LYMBYX2) entr.(D) + 3(LyMByX2)exit(D) 

S(J,7) = etc. (47) 



-ll- FN-192 
0300 

Equation (39) then becomes 

A.v~(J) = DNUY(J) + 1 s(~J,K)D(K) (48) 
K 

If Eqs. (44) and (48) are substituted into Eq. (40) 

and the minimization carried out one finds for D(K) 

D(K) = - 1 C-l(K,L)A(L) (49) 
L 

where 

A(L) = 1 (w~(J)cNux(J)T(J,L) + wy(J)~~~Y;~)S(~,~)),(50) 
J 

and 

C(K,L) = 1 (Wx(J)T(J,K)T(J,L) + Wy(J)S(J,K)S(J,L)). (51) 
J 

Equation (40) at the minimum becomes 

SUM = 1 (wx(~)~~Ux2(J) + Wy(~)~N~~2(~)) + 1 A(K)D(K). 
J K 

(52) 

The operations indicated in Eqs. (40) to (52) have 

been coded in the program TUNA. In order to obtain the in- 

verse matrix, MATINV by Garbow2has been included as a sub- 

routine. 

H. NUMERICAL RESULTS FOR BOOSTER 

All numerical results are expressed in the coordinate 

system (x,y,s) where s is distance measured along the equili- 

brium orbii for p = p,, x is measured in the direction 

radially normal to the equilibrium orbit, and y is the verti- 

cal direction. The fractional momentum change Ap/p is con- 

verted to equilibrium orbit position at the entrance to the 
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F-magnet. 

Ideal design gradients as a function of x were chosen 

previously3 and are characterized b: a selection of sextupol* 

moments, k2(F) = 0.6079ma2, k2(D) = -1.256m -2 . Figure 1 

indicates the variation of the idealized gradients with x. 

Figure 2 shows that both the radial and vertical tune varia- 

tion with momentum has indeed been reduced to zero. In 

addition, the increment in the gradient length at each end of 

the F and the D magnets is shown. This was obtained by fixing 

AsF = ASD = 0 and using the least squares adjustment to find 

the Coefficients AR, AD, BF, BD, etc. The incremental gra- 

dient lengths so obtained correspond to an effective termina- 

tion of the magnetic fields characterized principally by 

AF = -0.0354, AD = -0.0301, the conditions that make the end 

faces parallel. 

The normalized gradients at 8 GeV excitation measured by 

R. E. Peters4are shown in Figure 3. These gradients together 

with the effective termination used in the magnet design, 

namely, that the effective entrance and exit planes of the 

magnet are parallel and coincide with the end lami.nations, 

yield tune variations as shown in Figure 4. Clearly the 

effects of the finite pole width cause fluctuations in the 

gradient that are reflected in the tune variations. 

In order to realize the design effective endings for the 

magnets, end packs were machined by numeri.cally controlled 

contour milling. The surfaces chosen were derived basically 
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from two-dimensional reasoning, 
5 the variation with the 

radial dimension being introduced in such a manner as to 

permit the surface to match the design body contours smoothly. 

The effective termination of the magnetic fields after in- 

stallation of these end packs was measured by Peters. 4 Figure 

5 shows the variation of the tunes with momentum for this 

case in which measured gradients and measured field termina- 

tions are employed. It is clear that the end packs have 

over compensated for the difficulty shown in Figure 4. 

Figure 6 shows the result of asking the question, 

"What is the best shape for the effective field termination?" 

The least squares minimization mode of TUNA was activated 

using the measured values ASF = 0.007689 m and AS D = 0.01162 m 

for each of several polynomial degrees from 4 through 9. Only 

the results for aneighthdegree fit are shown since all lower 

degrees gave tune variations outside of the band 20.1. Also 

shown are the incremental gradient lengths that are derived 

from the eighthorder effective termination shapes. 

Table 1 presents the power series coefficients that 

express the shape of the effective magnetic field terminations 

according to Eqs. (34) and (35). Three cases are shown for 

each magnet; (1) measured gradients-design terminations, (2) 

measured gradients-measured terminations, (3) measured 

gradients-adjusted terminations. Table 2 presents the numeri- 

cal calculation of the radial tune variation with momentum for 

each of the cases just mentioned and in addition the test case 
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in which the idealized gradient was used together with the 

design termination. Table 3 gives the same information as 
Table 2 except that it relates to t1,e vertical tune. 

In summary, then, the measurements of curves along which 

the interior fields of the magnets effectively terminate show 

that the simplified method of deriving an end pack shape 

needs modification. To date, a method of using the differ- 

ence between the measured terminating curve and the desired 

terminating curve to generate a new iron shape has been 

devised. Its basic limitation stems from the fact that the 

pole width is larger than the aperture width and, hence, it 

is impossible to determine completely the pole shape. This 

problem is being considered further. 
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Table 1. Coefficients for Effective Field Termination 

s2 - s1 = 2.8896m 

F-Magnet D-Magnet 

Design Meas." Adjusted Design Meas.* Adjusted 

as (ml 0.0000 0.007689 0.007689 0.0000 0.01162 0.01162 

A -0.0354 -0.08110 -0.03189 -0.0301 0.02378 -0.01501 

B(m-I) -0.3560 -0.9852 -0.6844 0.2758 

Ch -2 ) 2.300 -O.l230E+Z -1.313 O.l265E+2 

D(mw3) -O.l065E+3 O.l464E+4 -110.8 -0.94673+3 

E(mp4) 0.7149E+4 -0.63763+4 

F(mp5) -0.72403+6 0.4329E+6 

G(mw6) -0.96123+6 0.2041E+6 

H Cm -7) O.l132E+9 -0.619OE+8 

*R. E. Peters 
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Table 2. Radial Betatron Frequency Variation with 
Momentum 

!F! Design Grad. Meas. Grad.* Meas. Grad.* Meas. Grad.* 
P Design Ends. Design Ends. Meas. Ends.* Adjusted Ends 

-0.018 0.000 0.160 0.836 0.003 
-0.016 0.000 -0.297 0.217 -0.020 
-0.014 0.000 -0.199 0.181 0.033 
-0.012 0.000 -0.096 0.172 0.006 
-0.010 0.000 -0.065 0.109 -0.031 
-0.008 0.000 -0.068 0.029 -0.023 
-0.006 0.000 -0.078 -0.045 0.012 
-0.004 0.000 -0.088 -0.106 0.035 
-0.002 0.000 -0.093 -0.156 0.022 

0.00 0.000 -0.085 -0.187 -0.013 
0.002 0.000 -0.056 -0.195 -0.039 
0.004 0.000 -0.010 -0.188 -0.027 
0.006 0.000 0.025 -0.196 0.015 
0.008 0.000 0.013 -0.259 0.045 
0.010 0.000 -0.051 -0.386 0.024 
0.012 0.000 -0.113 -0.525 -0.037 
0.014 0.000 -0.080 -0.589 -0.048 
0.016 0.000 -0.009 -0.638 0.059 
0.018 0.000 -0.589 -1.367 -0.016 

SYNCH tune = 6.700 

*R. E. Peters 
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Table 3. Vertical Betatron Frequency Variation with 
Momentum 

AP -^ 
P 

-0.018 
-0.016 
-0.014 
-0.012 
-0.010 
-0.008 
-0.006 
-0.004 
-0.002 

0.000 
0.002 
0.004 
0.006 
0.008 
0.010 
0.012 
0.014 
0.016 
0.018 

SYNCH tune = 6.800 

Design Grad. Meas. Grad.* 
Design Ends. Design Ends. 

0.000 0.048 
0.000 0.138 
0.000 0.096 
0.000 0.054 
0.000 0.031 
0.000 0.016 
0.000 0.005 
0.000 -0.003 
0.000 -0.009 
0.000 -0.012 
0.000 -0.019 
0.000 -0.027 
0.000 -0.035 
0.000 -0.035 
0.000 -0.027 
0.000 -0.025 
0.000 -0.051 
0 .ooo -0.097 
0.000 -0.021 

Meas. Grad.* Meas. Grad.* 
Meas. Ends.* Adjusted Ends 

-0.343 -0.003 
-0.182 0.011 
-0.163 -0.008 
-0.153 -0.005 
-0.133 0.004 
-0.110 0.006 
-0.088 0.000 
-0.068 -0.005 
-0.047 -0.004 
-0.027 0.002 
-0.009 0.006 

0.006 0.004 
0.024 -0.004 
0.053 -0.009 
0.094 -0.003 
0.135 0.010 
0.154 0.010 
0.160 -0.016 
0.297 0.005 

*R. E. Peters 
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REFERENCES 

1. Note that near the magnet ends one does not know a 
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